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The success of an active control of vibration system depends upon both the cost function
used and the positions of the controlling actuators. The cost function used also a!ects the
best actuator positions since their performance is judged on the attenuation of this
parameter. However, the physical success will be dependent on how well the cost function
represents the actual physical vibration. Sometimes the most meaningful cost function can
be calculated in a theoretical model but is di$cult to measure in practice, and a compromise
to a more practical one is often made. In this paper four cost functions are considered with
the aim of reducing the vibration transmitted from the base to the end of a lightweight
cantilever two-dimensional structure, and their performances compared with a view to
evaluating the true success in using other cost function parameters in reducing the
vibrational energy.

Of the four cost functions studied, two are energy-based: one representing the total
vibrational energy and one using only the #exural energy level. The other two cost functions
are based on velocity measurements: the sum of the squares of the translational velocity
components, and one additionally using rotational velocity measurements. An initial study
con"rms that the total vibrational energy is the cost function which most comprehensively
represents the beam vibration and is used as the reference in a comparison of the other cost
functions.

Then, a ranking of the best actuator positions on the structure is determined to achieve
the best reductions in each cost function. For each of these sets of actuator positions the
consequential attenuation in the total vibrational energy is evaluated whilst minimizing the
other cost functions. Thus, the e!ectiveness of these cost functions in reducing the total
vibrational energy is evaluated.

( 2000 Academic Press
1. INTRODUCTION

Unwanted vibrations can have many undesirable e!ects in structures. They can cause
damage to the structure or an adjoining component. To a lesser extent they may prevent the
structure being used for its intended purpose if too much vibrational energy exists in critical
regions. For the lightweight structure studied here, a typical application might be to mount
an antenna on a satellite using a boom-arm, and the focus of the optimization is to reduce
the base vibration being transmitted to the antenna at the end of the arm. Traditional
techniques of reducing vibration, by adding additional mass or damping, are not always
suitable because the issue of weight is often important.

An alternative strategy is the addition of a control mechanism to an existing structure.
One such technique is that of active vibration control, which uses secondary sources of
0022-460X/00/420223#22 $35.00/0 ( 2000 Academic Press
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vibration in order to reduce the original vibration by destructive interference at some
desired region. This is now a well-proven technique [1]. The vibration, which is represented
by some suitable parameter, is minimized by the control system. Sometimes the parameter
is compromised on practical grounds. Originally, this parameter simply represented the
magnitude of the vibration in the region of one or a number of strategic points [1]; however,
the use of a representation of power #ow was soon seen as a more e!ective practice. In
general, structures are lightly damped and therefore the mechanical impedance is strongly
dependent upon the frequency and also upon the positions of the sensors and actuators on
a structure. Therefore, a single measurement of velocity or force is not a su$cient
representation of power. Earlier use of power [2] demonstrates the advantage of using
a power measurement, despite the added complexity of such systems. Howard and Hansen
[3] have shown that if either one of the force or the acceleration are minimized as a cost
function for active vibration isolation, this does not necessarily lead to the minimization of
the other. Pan and Hansen [4] demonstrate that the use of acceleration as a measurement
to reduce power #ow along a beam is su$cient if the sensor is placed outside the near "eld
of any power sources. Power is used as the cost function parameter for vibration isolation
by Bardou et al. [5], who compare di!erent types of strategy used (to minimize power
supplied by the primary source or maximize power absorbed by the secondary sources).
Brennan et al. [6] show that the best power measurement strategy can depend upon the
nature of the problem. The application of feedforward active control is used here, its
application to the structure considered here was discussed in reference [7], where the
advantage of using an energy-based cost function over one based on velocities at a point
was also given.

The position of the actuators on structures is also important if the maximum obtainable
reduction is sought, and this is often a discrete optimization problem. Optimal actuator
positions can be found by exhaustive search if combinatorially feasible, but other techniques
such as evolutionary algorithms have been successfully employed; for example see reference
[8] or reference [9]. In this paper the number of possible actuator combinations is relatively
small and an exhaustive search is feasible. The method of determination of the optimal
actuator positions is not given here, but the authors have previously detailed the exhaustive
search method used to "nd the best actuator positions for one of the cost functions
considered here [7].

This paper is organized as follows: Section 2 details the two-dimensional (2-D) structure
considered and presents an overview of the application of active vibration control systems
to the structure. Section 3 introduces the parametric measurements required in the
application of active control, and in section 4 the four di!erent cost functions using these
measurements are derived. A single-frequency comparison between cost functions is
reported in section 5, which provides an introduction to the di!ering levels of success
attainable using di!erent cost functions. The total vibrational energy is then used as
a reference to compare the average performance of all other three cost functions, over
a band of frequencies. This is reported in section 6.

2. THE STRUCTURE

The structure studied is shown in Figure 1, the co-ordinate units are in metres. The
structure is the same used previously by the authors [7, 10]: a lightweight cantilever
structure comprising 40 rigidly joined beams of lengths 1 and 1)414 m. The individual beam
parameters correspond to aluminium beams of approximate rectangular cross-sectional
dimensions 50 mm]25 mm, with the longer dimension in the x}y plane. The structure is



Figure 1. Diagram of the structure considered showing; global co-ordinates, primary force input and beam
numbering.
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two-dimensional; motion is only considered in the x}y plane. The rightmost beam is
the subject of the vibration minimization, and is referred to as beam 40, as labelled in
Figure 1.

The analytical model, which is described by the authors in reference [10] and in more
detail in reference [11], considers both axial and #exural beam vibration. All the cost
functions considered are derived from the inter-beam coupling force and the velocity
components at the ends of the beam. In the application of active vibration control,
secondary control forces are applied to points on the structure in order to reduce the e!ect
of the primary force, and produce a net reduction in the vibration in the end beam. The
secondary forces used are applied by means of double-acting actuators which are placed in
or alongside a beam and produce equal and opposite axial forces at each end.

In practice, the active control system adaptively seeks the complex secondary force
control signals which cause the vibration in the end beam to be minimized for each
frequency. The control aim is to "nd the minimum of a multi-dimensional quadratic surface.
The optimal value of the control forces can be found analytically and hence the minimum
cost function value can be predicted theoretically. This is dependent upon the mechanical
coupling between both the primary force, the secondary forces and the locations where the
cost function parameter is measured.

3. APPLICATION OF ACTIVE VIBRATION CONTROL TO STRUCTURE

The base vibration is modelled as a single sinusoidal transverse force 1 N applied at
the middle of one of the beams adjoined to the base (as shown in Figure 1). In active
control terminology this is called the primary force. Two vectors de"ning the complex
force and velocity components (in all the degrees of freedom considered) at the joints at the
ends of beam 40 in the absence of any other forces (i.e., without active control operative),
are denoted f

p
and v

p
. Active control applies secondary forces to &&counter'' vibrations on the

structure. Their e!ect is determined by a vector describing the complex values of secondary
forces of each actuator f

s
, and either a &&transformed'' force or mobility transfer matrix (C or

Y). This represents the resultant force or velocity components from the secondary forces at
the joints at the ends of beam 40, in all three degrees of freedom resulting from the
axial forces of the actuators. More detailed information on the form of C and Y is given
in reference [7]. The net force and velocity vectors from the combination of both
primary and secondary forces is then given by the sum of these two components,
so that

f"f
p
#Cf

s
, (1)
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where the format of the force vector f is given by

f"[M f 40,0
x

f 40,0
y

f 40,0h N M f 40,1
x

f 40,1
y

f 40,1h N]T. (2)

Other force and velocity vectors used (f, f
p
, v, v

p
) all have the some format, with elements

which de"ne the translational forces or velocities in the x and y directions, and the moments
or rotational velocities, at end 0 and end 1 of beam 40. f

s
is a vector comprising individual

complex secondary actuator forces. The net velocity vector v is similarly,

v"v
p
#Yf

s
, (3)

where v
p

is the vector of the six velocity components due to the primary force only (the
velocity vectors being of the same format as the force vectors). At each end of beam 40 the
force and velocity are totally described in the 2-D model by two translational components
and one rotary component; x, y and h, in the co-ordinate system indicated in Figure 1.

4. COST FUNCTION PARAMETERS

The parameter used as the objective function (or cost function in active control
terminology) in minimized by the control system. The physical success of the control
systems depends, in part, on how well the cost function represents the unwanted physical
vibration. For example, a measurement of acceleration or velocity at a single point only
represents the vibration at that single point, and may not be a good measure of energy #ow
into a beam. It may not always be practical to obtain a direct measure of the desired
parameter to be controlled, however (for example, dissipated power in a beam), though this
may easily be calculated from a theoretical model. Four cost functions are studied here, all
with the aim of reducing some measure of vibration in the end beam of the structure. There
are two types of functions: energy-based cost functions utilizing both force and velocity
measurements, and velocity-based cost functions. The former generally gives a good
measure of performance but is more di$cult to measure in practice, as inter-beam coupling
force measurements are required.

4.1. MINIMIZATION OF BEAM FLEXURAL ENERGY

This cost function is equal to the energy level in beam 40 due to its #exural vibration.
This parameter has previously been used by Keane [12] and the authors [10] to reduce
the vibrational energy on the structure considered here, using genetic algorithm
optimization of the geometry, and also for the optimum placement of actuators [7].
The #exural energy level in the beam arises as a result of the balance between the average
energy #owing into the beam at its ends, and the average dissipation of energy due to its
damping.

For harmonic vibration, the average dissipated power is de"ned as half of the real part of
the conjugate product of the complex force and velocity vectors at the joints at the ends of
the beam,

J
P
"1

2
ReMfHvN, (4)

which can be more conveniently expressed in the form

J
P
"1

4
(fHv#vHf ). (5)
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Using equations (1) and (3) this can be expressed in terms of f
s
, the independent variable for

the cost function minimization,

J
P
"1

4
[fH

s
(CHY#YHC) f

s
#fH

s
(CHv

p
#YHf

p
)#(f

p
Y#v

p
C) f

s
#fH

p
v
p
#vH

p
f
p
], (6)

which can be written in a general quadratic form,

J"xHAx#xHb#bHx#c. (7)

The positive scalar c represents the value of the cost function due to the primary excitation
only (without active control; x"0). The xHAx term represents the value of the cost function
due to the secondary source excitation only (without a primary source of structural
excitation), and this is obviously always positive (unless there is an external power input
into beam 40). Based on these physical grounds, A will always be positive de"nite (see
Appendix A). This is veri"ed in practice by con"rming that all the eigenvalues of A are
positive. Thus, the derivation of the minimum value of the cost function can be greatly
simpli"ed. Also, as the active control system is over-determined (there are more degrees of
freedom for sensors than actuators), A is of full rank. The minimization of the quadratic
form in equation (7) is detailed in Appendix A. This yields the optimum secondary control
vector

x
o
"!A~1b (8)

and, therefore, the optimum secondary force vector is

f
so
"!(CHY#YHC)~1(CHv

p
#YHf

p
). (9)

From Appendix A the minimized value of the dissipated power is of the form

J
o
"c!bHA~1b. (10)

Hence the minimized net dissipated power is explicitly,

J
Po
"1

4
[(fH

p
v
p
#vH

p
f
p
)!(fH

p
Y#vH

p
C) (CHY#YHC)~1(CHv

p
#YHf

p
)]. (11)

The average power dissipated in beam 40 is simply related to the average energy level of the
beam, thus,

E
flex

"

J
P

c
d

, (12)

where c
d

is the beam damping which has the value 20 s~1 at all frequencies, in this case.
Even though minimizing either E

flex
or J

P
will result in the same optimum secondary force

vector, the #exural energy is used here so that it can subsequently be summed with the
rigid-body kinetic energy below.

4.2. THE RIGID-BODY KINETIC ENERGY OF A BEAM

The minimization of the #exural energy in the beam, calculated above, only accounts for
the motion of the beam due to its #exure. If the beam does not undergo #exure, its power
dissipation and therefore the #exural energy is zero. However, the beam may still move as
a rigid body and this motion would not be detected by E

flex
. So, even though E

flex
may
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have been reduced to its minimum value, a signi"cant amount of undetected rigid-body
motion may exist, which could dominate the motion of the beam, or any object connected
to it. Therefore, a cost function was sought which represents all the beam energy due to its
motion; the #exural energy level and the rigid-body kinetic energy, E

rigid
. The minimization

of this total vibrational energy cost function would therefore be superior and achieve the best
overall vibration reduction.

Considering the rigid-body kinetic energy due to movement in the axial direction of the
beam 40 (in the global co-ordinates of Figure 1, in the y-axis direction) the velocity of the
centre of mass of the beam, v

cm
, is given by the average of the y-axis velocities at the end of

the beam. At beam ends 0 and 1 the velocities are

v0
cmy

"ReM<0
y

e*utN, v1
cmy

"ReM<1
y

e*utN, (13a,b)

where<0
y

and <1
y

are the complex amplitudes. The instantaneous rigid-body kinetic energy
is thus described by

KE
y
(t)"

1

2
mv2

cm
(t)"

1

2
mA

v0
cmy

(t)#v1
cmy

(t)

2 B
2
, (14)

where m is the total mass of the beam. For harmonic excitation the total time-averaged
kinetic energy is given by

KE
y
"

m

16
ReM<0

y
<0*

y
#2<0

y
<1*

y
#<1

y
<1*

y
N. (15)

The rigid-body kinetic energy due to the translation of the centre of mass of the beam in its
transverse sense, in the x-axis direction, can be expressed in terms of the scaled real part of
the product of the x-axis velocities,

KE
transx

"

m

16
ReM<0

x
<0*

x
#2<0

x
<1*

x
#<1

x
<1*

x
N. (16)

When the beam rotates as a rigid body about its centre of mass the rotational kinetic
energy is

KE
rot
"1

2
IhQ 2, (17)

where I is the second moment of mass of the beam about its centre and hQ is the angular
velocity of the beam. For small h, the instantaneous kinetic energy can be expressed in terms
of end velocities, v0

cmx
and v1

cmx
,

KE
rotx

(t)"
m¸2

24 A
v0
cmx

(t)!v1
cmx

(t)

¸ B
2
, (18)

where ¸ is the beam length. For harmonic excitation the average kinetic energy can be
expressed by

KE
rotx

"

m

48
ReM<0

x
<0*

x
!2<0

x
<1*

x
#<1

x
<1*

x
N. (19)
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Hence, the total rigid-body energy of the beam, E
rigid

, is obtained from the sum of equations
(15), (16) and (19), so

E
rigid

"

m

48
ReM3<0

y
<0*

y
#6<0

y
<1*

y
#3<1

y
<1*

y
#4<0

x
<0*

x
#4<0

x
<1*

x
#4<1

x
<1*

x
N. (20)

After some manipulation, E
rigid

can be expressed succinctly in a linear matrix formulation
using the velocity component scaling matrix N,

E
rigid

"

m

96
vHNv, (21)

where v is the velocity vector (3), and

N"A
8 0 0 4 0 0

0 6 0 0 6 0

0 0 0 0 0 0

4 0 0 8 0 0

0 6 0 0 6 0

0 0 0 0 0 0
B . (22)

Expanding (21) using (3) the cost function can be expressed in quadratic form,

E
rigid

"

m

96
(f
s
YHNYf

s
#fH

s
YHNv

p
#vH

p
NYf

s
#vH

p
Nv

p
). (23)

4.3. MINIMIZING THE TOTAL VIBRATIONAL ENERGY OF THE BEAM

A global cost function is de"ned which is the total vibrational energy of beam 40, E
total

,
combining #exural energy and rigid-body kinetic energy,

E
total

"E
flex

#E
rigid

. (24)

This is the sum of the two quadratic functions (6) (using equation (12) to convert to energy)
and equation (23), resulting in another quadratic form, which de"ne the coe$cients in
equation (7) as

A"

1

4c
d

(CHY#YHC)#
m

96
YHNY, (25a)

b"
1

4c
d

(CHv
p
#YHf

p
)#

m

96
YHNv

p
, (25b)

c"
1

4c
d

(fH
p
v
p
#vH

p
f
p
)#

m

96
vH
p
Nv

p
. (25c)

The optimum secondary force vector and the minimized value of E
total

are given by
equations (8) and (10) with the values of A, b and c as de"ned in equation (25).



230 D. K. ANTHONY AND S. J. ELLIOTT
The minimum value of the cost function is obtained if A is positive de"nite. The "rst term
is quadratic as N is real symmetric and hence positive de"nite. The second term is
semipositive de"nite for all secondary actuator positions except on beam 40 (see section 4.1).
The sum of these two terms results in a positive-de"nite function.

4.4. MINIMIZATION OF THE SUM OF THE SQUARES OF THE TRANSLATIONAL

JOINT VELOCITIES

The "rst velocity-based cost function studied, J
trans

, uses the sum of the squares of the
translational velocity components at the ends of beam 40. These measurements can be
readily obtained using standard accelerometers with the relevant orientations. To be
consistent with the cost function derived in the following section, this cost function is scaled
so that it is equal to the sum of the rigid-body kinetic energies of each half-beam length of
beam 40. The time-averaged values of kinetic energy at end 0, for example, of beam 40 in the
x- and y-axis directions are, therefore,

KE0
x
"

m

8
D<0

x
D2, KE0

y
"

m

8
D<0

y
D2, (26a,b)

for harmonic excitation, and adhering to the previous notation used in equation (13).
A reduced velocity vector, containing only translational components, may be achieved by
premultiplying the velocity de"ned in equation (3) with the matrix P,

P"

m

8
diag(1 1 0 1 1 0). (27)

The cost function J
trans

is then

J
trans

"vHPv. (28)

Expanding equation (28) with equation (3) results in a quadratic function of the form (7)
where

A"YHPY, (29a)

b"YHPv
p
, (29b)

c"vH
p
Pv

p
. (29c)

The minimum cost function, and the optimum secondary force vector is given in equations
(8) and (10) with the values of A, b and c as de"ned in equation (29).

4.5. MINIMIZATION OF THE WEIGHTED SUM OF THE SQUARES OF ALL

VELOCITY COMPONENTS

In order to provide a more comprehensive velocity-based cost function, the angular
velocity at each joint could also be measured. Even though devices to measure angular
velocity are not as commonplace as their translational counterparts, low-cost practical
devices are readily available.
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Intuitively, it is a good strategy to reduce all the velocity components at the ends of the
beam (ideally to zero). A cost function that pursues this aim is the sum of the squares of all
velocity components. However, the arbitrary combination of the squares of the
translational and rotary components will produce a cost function in which the relative
&&weighting'' between these two di!erent quantities will depend on the system of units (e.g.,
CGS, SI, etc.) in which the cost function is de"ned. Whilst it is not possible to de"ne this
weighting rigorously for anything other than solely rigid-body motion, an attempt is made
to produce a sensible weighting. This weighting is achieved by considering the kinetic
energy represented by both the linear and rotational velocity components. This cost
function is easier to implement in practice than the total energy cost function, since the
measurement of #exural energy requires the inter-beam coupling forces, which are not as
easily obtained as a velocity measurement, especially more so if the application of active
control was an &&add-on'' to an existing structure.

To determine a sensible weighting the beam is considered as two half-lengths. The halves
are assumed to move as rigid-body levers whilst being hinged about the joints at the beam
ends. Each translational velocity component is then assumed to represent the kinetic energy
of a lumped mass equal to the mass of half of beam 40. Each rotational velocity component
is assumed to represent the kinetic energy due to the rotation of the distributed mass of each
half-beam length &&lever''. This may appear to disregard the #exural motion of the beam;
however in the frequency region considered only the "rst transverse mode is signi"cant.
Considering the beam as two &&rigid-body'' halves allows the "rst transverse mode to be
approximated, giving some credence to this approximation.

The kinetic energy of each half-length of beam 40 due to the translation in the x- and
y-axis directions is as given above in the derivation of the cost function J

trans
, (equation (26)).

Considering the average rotational kinetic energy of one-half of beam 40 with distributed
mass, this is represented using the rotational velocity component at the beam end. So, at
end 0 this is given by

KE0h"
m

96
D<0h D2. (30)

The relative scaling between the translational and rotational components is therefore
shown in equations (26) and (30). A diagonal pre-multiplying matrix L allows all the
components of the velocity squared cost function J

all
to be written as

J
all
"vHLv, (31)

where L is de"ned as

L"

m

8
diagA1 1

1

12
1 1

1

12B . (32)

Expanding equation (31) with equation (3) results in a quadratic function of the form (7)
where

A"YHLY, (33a)

b"YHLv
p
, (33b)

c"vH
p
Lv

p
. (33c)

The minimum cost function, and the optimum secondary force vector is given in equations
(8) and (10) with the values of A, b and c as de"ned in equation (33).
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5. THE USE OF DIFFERENT COST FUNCTIONS AT SINGLE FREQUENCIES

As shown in the previous section, the use of E
flex

alone does not give a proper
representation of all the vibrational energy of the beam. The authors have previously used
E
flex

to study the reduction of the vibration transmission of the structure shown in
Figure 1, using both passive and active vibration control methods [7, 10]. To investigate
the potential consequences of using E

flex
as the cost function instead of E

total
a comparison

was conducted, which was also extended to the two velocity-based cost functions developed
above. To demonstrate that the choice of cost function can have important consequences on
the success of an active control system, two single-frequency scenarios are presented ahead
of the full analysis. The "rst case is that using an actuator on beam 3 of the structure at
a frequency of 170 Hz. Firstly, considering the two energy-based cost functions, Figure 2
shows the e!ect on the total vibrational energy of the beam (E

total
) when using E

flex
and

E
total

as the cost functions. Both the constituent rigid and #exural energy components are
also shown. It is seen that in minimizing E

flex
an increase in the value of E

rigid
is seen, which

then becomes the dominant component of E
total

, such that beyond a certain point
reductions in E

flex
are fruitless. However, when E

total
is used as the cost function the

minimum value of E
total

is thus achieved, even though a small increase in E
rigid

occurs.
The results of this comparison are summarized in Table 1, which also details the

reductions in all of the other parameters considered when each is minimized (used as the
cost function). The Table also includes the results for a second case (Case 2, of using two
Figure 2. E!ect of applying active control on E
flex

, E
rigid

and E
total

of beam 40 for Case 1 with (a) E
flex

and
(b) E

total
used as cost function (shading scheme: Dark: no active control, Light: active control applied).



TABLE 1

Summary of results showing the e+ect on the values of four parameters and E
rigid

, when each
parameters is minimized as an active control (A<C) cost function for two sets of actuator

positions at di+erent frequencies

Attenuation achieved in each parameter by
minimizing cost function shown (dB)

Case Actuator Frequency AVC cost
no. positions (Hz) function E

total
E
flex

E
rigid

J
trans

J
all

E
total

3)2 5)5 !6)2 !6)0 !3)3
1 3 170 E

flex
2)2 7)1 !9)2 !9)0 !5)0

J
trans

0)3 0)3 0)07 0)05 !0)1
J
all

!2)1 !1)9 !4)2 !4)0 1)3

E
total

6)4 6)4 6)5 6)6 8)4
2 5, 19 160 E

flex
4)6 7)7 !0)7 !0)5 !0)5

J
trans

5)1 4)3 45)9 41)0 3)5
J
all

6)2 5)9 8)0 8)3 9)2
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actuators on beams 5 and 9 at a frequency of 160 Hz. It is again seen here that the use of
E
total

as the cost function is superior to E
flex

. In this particular case the use of E
flex

increases
the rigid-body kinetic energy, whilst the use of E

total
reduces it by about 6 dB with less than

1)5 dB being sacri"ced for the reduction in the value of E
flex

. Also, for Case 2, using either
J
trans

or J
all

as the cost function yields good reductions in E
total

, which are better than those
obtained using E

flex
as the cost function. Here J

trans
is seen to achieve substantial reductions

in the rigid-body kinetic energy, but it is the smaller reduction in E
flex

in this case which
makes the reduction achieved in E

total
second to that for J

all
. The result of using J

trans
and

J
all

as cost functions in Case 1, however, is not as successful. This is explained by the fact
that actual reductions in the cost functions themselves are only 0)05 and 1)3 dB for J

trans
and

J
all

respectively (compared to 41)0 and 9)2 dB for Case 2). Thus, from this brief analysis the
success of the use of each parameter as the cost function appears to be very much dependent
upon the frequency at which the performance is considered. To provide a more practical
comparison the average performance over a frequency band is used, as presented in the next
section.

The di!ering levels of success in using each of the four di!erent cost functions is due to the
fact that each cost function is a di!erent representation of the same physical vibration. This
fact is illustrated in Figure 3, which shows the value of the four parameters without active
control over the frequency range 50}350 Hz. All of the parameters show similar responses
indicating higher and lower levels of beam vibration, although J

trans
is seen to be the least

consistent.

6. EFFECT ON E
TOTAL

WHEN MINIMIZING OTHER COST FUNCTIONS

The results from the previous section show that the success of using each cost function to
reduce the value of E

total
is frequency dependent. For Case 2, detailed above, each parameter

was minimised (i.e., used as the cost function) and its minimum value for each frequency in
the range 50}350 Hz (at 5 Hz intervals) plotted against the same parameter value without
active control. Figure 4 shows the results for each of the four cost functions considered.



Figure 3. The variation of the four di!erent parameters used to quantify the vibration of beam 40 with
excitation frequency when uncontrolled. **, E

total
; } }} } , E

flex
; . + .+ .+ .+ , J

trans
; .} .} .} .} , J

all
.
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Reductions, even though slight in some cases, are achieved at all frequencies within this
range for all the parameters. The success of using the other cost functions was evaluated by
determining the level of E

totol
in the beam at each frequency as a consequence of minimizing

each cost function. The results are shown in Figure 5, which con"rms the frequency
dependence suggested in section 5. It is seen that the best reductions in E

total
are achieved

using the two energy-based cost functions. Using J
trans

as the cost functions actually
increases the value of E

total
(by almost two orders of magnitude) at some frequencies. The

average performance of the cost function over the band of frequencies of interest will
provide an average measure of the success using each cost function. The frequency-averaged
cost functions are de"ned for a general cost function parameter, CF, as

SCFT"
1

n

n
+
k/1

CF(u
L
#(k!1)Du), (34)

where n is the number of frequency steps, Du the angular frequency spacing and u
L

the
lower angular frequency point. For all cases subsequently discussed, the circular frequency
band range 150}250 Hz is used, comprising of 21 steps, thus Du/2n is 5 Hz.

6.1. EFFECT OF COST FUNCTION ON OPTIMUM APPLICATIONS OF ACTIVE CONTROL

The success of applying active vibration control is chie#y dependent upon three factors:
the position of the actuators, the cost function used and the control system employed. The
latter is outside the scope of this paper. The determination of the best actuator positions can
be a combinatorially large problem. To guarantee "nding the best actuator positions for
a given number of actuators, the minimized value of the frequency-averaged cost function



Figure 4. Variation of the four parameters: (a) E
total

, (b) E
flex

, (c) J
trans

and (d) J
all

, with frequency, and their
corresponding minimized values when used as a cost function over the frequency band for which active control is
applied, for Case 2.
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needs to be determined for all possible combinations of actuator positions. Where this is not
feasible other methods are employed, as discussed in the Introduction.

The best actuator position for an AVC system using a particular cost function parameter
was achieved by determining the attenuation attainable in the cost function parameter itself
for each possible actuator position. This enables a ranking of positions to be achieved and
one of the higher ranked combinations of actuator positions is then selected, although
practical or other considerations might prevent the best ranked combination from being



Figure 4. Continued.
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utilized. The optimal positions were computed for each of the four cost functions. The best
ranked positions were calculated for one, two and three actuators. Beam 40 was not used as
a candidate position for an actuator. Hence, there are 39, 741, 9139 possible actuator
positions for one, two and three actuators. It is thus feasible to perform an exhaustive search
of all possible combinations. Further details on this process are described in reference [7]
where the optimal actuator positions were computed for the case where SE

flex
T was used as

the cost function.



Figure 5. The values of E
total

produced as a consequence of applying active control with each parameter as cost
function, with minimized cost function values as shown in Figure 6. E

total
: D, E

flex
: *, J

trans
: s, J

all
: e.
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For the best sets of actuator positions, determined using each cost functions parameter,
the consequential attenuation of E

total
was then evaluated. E

total
has been shown above to be

the best representation of the total vibrational energy and hence is used as the reference by
which the success of using other cost functions are evaluated. If a particular cost function is
a good representation of the total vibrational energy of the beam (E

total
), then the high and

low values of attenuation in the cost function parameter will correspond to high and low
values of attenuation in E

total
. The cost function can then be said to be a predictable measure

of E
total

. This will lead to the ranking of actuator positions on the basis of the cost function
parameter such that the higher ranked ones will provide the best reduction in E

total
for the

cost function. Also, similar values of attenuation should be achieved when using each cost
function as are achieved when using E

total
.

6.1.1. Single-actuator active control

The success of using each of the four frequency-averaged cost functions in an active
control system using a single actuator was studied. The results are presented in Figure 6.
Each graph shows the consequential attenuation achieved in SE

total
T for each actuator

position, which has been ranked in performance of the cost function parameter attenuation.
The attenuation for each cost function is shown by the plain line, and is thus monotonically
decreasing due to the ranking. It is stressed that each rank number does not necessarily
correspond to the same actuator position for each cost function. The best of the cost
functions, apart from the reference is SE

flex
T which appears to yield similar reductions to

SE
total

T. SE
flex

T thus appears to be a predictable measure of SE
total

T, so that the actuator
positions which give high values of attenuation in SE

flex
T also give high values of

attenuation in SE
total

T. Next, the use of SJ
all

T also provides good attenuation in SE
total

T,
although this parameter is not such a predictable measure of SE T as SE T. Some of the
total flex



Figure 6. Attenuation achieved in each cost function and E
total

for all single-actuator positions using each cost
function. The actuator positions are ranked in order of decreasing attenuation achieved for each cost function
parameter (shown as plain line). The attenuation in E

total
for each instance is shown when using as the cost function:

(a) E
total

: n, (b) E
flex

: *, (c) J
trans

: s and (d) J
all

: e.
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better values of attenuation achieved in SE
total

T are found at low ranked positions and thus
would not normally be selected on the basis of the cost function performance. Despite this,
the use of this cost function is not disastrous as would be the case with the use of SJ

trans
T. In

this case the ranking obtained on the basis of the cost function is no use for predicting good
values of attenuation in SE

total
T. Here all the attenuation values in SE

total
T are below 6 dB



Figure 7. (a) Summary of results in Figure 8: performance achieved in E
total

by minimizing each cost function
parameter with results plotted on common axes and each cost function denoted by same symbols as in Figure 8.
Values of attenuation in (b) E

flex
and (c) E

rigid
for corresponding combinations in (a) (cost function E

total
: n, E

flex
:

*, J
trans

: s, J
all

: e).
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and in a few cases (including the second ranked position) the use of this cost function
actually increases SE

total
T. Thus, SJ

trans
T is neither a good nor a predictable measure of

SE
total

T.
To aid comparison between the absolute values of consequential attenuation achieved in

SE
total

T for each cost function, all of the values of attenuation in SE
total

T achieved with
a single actuator against the individual rankings for each cost function are presented on
common axes in Figure 7. It is emphasized that each rank may represent di!erent actuator
position combinations for each cost function. To gain a physical insight into why the
performance of some cost functions are better than others, the values of consequential
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attenuation in SE
total

T resulting for each cost function are split into the two constituent
parts SE

flex
T and SE

rigid
T, as studied in section 5. These are also presented in Figure 7.

From the reference values used for the dB scales shown on the axes for each of these
components (the energy levels without AVC) it is seen that the signi"cant energy
component is SE

flex
T. Thus, to achieve good values of attenuation in SE

total
T each cost

function needs to produce good values of attenuation in SE
flex

T. This is achieved, to
di!ering degrees of success, for all of the cost functions, except SJ

trans
T, and its poor

performance in representing SE
total

T is thus explained. It is interesting to note, however, that
the use of SJ

trans
T does provide a good and predictable measure of the rigid-body kinetic

energy of the beam. The actuator positions which give good reductions in SJ
trans

T also
provide relatively good reductions in SE

rigid
T (at best 10 dB greater than for minimizing

other cost functions) which almost monotonically decrease with the ranking for this cost
function.

6.1.2. Multi-actuator active control

The investigation was extended to an active control system utilizing two and three
actuators. Only the "ndings using three actuators are presenter here; similar results were
found when using two actuators.

The results are presented in Figure 8, in the combined format of Figure 7. The ranking of
the x-axis refers, again, to the individual ranking for each of the cost functions, and does not
imply common actuator positions at each rank value. It is not feasible to show all the 9139
ranked positions and only the top 100 are shown. The order of success between the cost
function parameters in minimizing SE

total
T is similar to that when using a single actuator.

SE
flex

T is found to yield very predictable reductions in SE
total

T, which are also of similar
magnitudes. The second best cost function, again, is SJ

all
T. In general, it achieves in between
Figure 8. Performance achieved in E
total

for best ranked three-actuator positions by minimizing each cost
function parameter, with results plotted on common axes and each cost function denoted, E

total
: n, E

flex
: *, Jtrans

:
s, J

all
: e.
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5 and 10 dB less reduction in SE
total

T than either energy-based cost function. Again, SJ
trans

T
is the worst in this respect. Although not shown here, it is found that this is due to SJ

trans
T

not providing good reductions in SE
flex

T. However, it still continues to provide large
reductions in SE

rigid
T, generally 30 dB greater than for other cost functions. The best ranked

positions for SJ
trans

T yield reductions of over 80 dB in SE
rigid

T.

6.2. DISCUSSION OF RESULTS

It is seen for the optimal application of active control over a band of frequencies, which
relies on determining the best actuator positions for single and multiple actuators, that there
is little di!erence in using SE

total
T or SE

flex
T as the cost function parameter. E

total
is, in

general, a more comprehensive representation of all types of vibration of the beam. It does
not require any parameter measurements which are not already required for E

flex
.

Although the application of active control at single frequencies in section 5 was shown to
suggest that E

total
is the best cost function, especially for cases where either the lack of

reduction or increase of E
rigid

has consequences on the reduction of E
total

. The frequency-
averaged SE

rigid
T is seen to be less signi"cant than SE

flex
T, and so generally SE

flex
T is found

to perform well as a cost function. It is suggested that this is due to the nature of the beams
used in the structure considered here. The beams used are &&thin'' beams and therefore
relatively #exible, and also the natural frequencies for transverse vibration are much lower
than those for axial vibration. The "rst transverse mode occurs at about 240 Hz which is
just in the frequency band studied, whereas the "rst axial mode occurs at about 2)5 kHz.
Therefore, the detection of rigid-body motion is thought to be more important for
a structure using beams with a greater cross-section (normally termed &&rods'' or &&bars'')
which only support axial vibration. The development and use of the E

total
cost function has,

however, allowed this to be veri"ed.
Two velocity-based cost functions were also investigated to "nd their e!ectiveness in

reducing E
total

. Using only a velocity measurement in the near "eld of a source has been
shown by Pan and Hansen [4] to have worse performance than outside the near "eld of the
source. This is equally applicable to a structural discontinuity, where all the velocity
measurements are taken in this case. So the velocity-based cost functions can only be
expected to be approximations of E

total
. It is seen that the incorporation of the rotational

velocity components at the ends of each beam is very important to achieve good,
predictable reductions in E

total
, and J

all
shows a much better performance over simply using

the J
trans

cost function. When using three well-positioned actuators, the J
all

cost function is
seen to have average reductions, over the frequency bandwidth considered, of 5}10 dB less
than the E

total
cost function. For the J

trans
cost function the attenuation is over 25 dB less.

J
trans

, however, does provide a very good representation of the value of E
rigid

of the beam,
and consistently achieves predictable and much greater reductions than for the other cost
functions. Therefore for a structure comprising rigid beams (or rods) the use of only E

rigid
,

which is seen to be well approximated by the slightly simpler J
trans

parameter, may be
su$cient. Thus, the rotational velocity measurement would not be required.

A "nal note is included on the weighting between the translational and rotational velocity
components used in the formulation of J

all
. The addition of the kinetic energy component

due to the rotation of beam 40 was modelled by considering the beam to be composed of
two rigid levers whose lengths were half that of the beam, hinged about the beam end.
However, this is an approximation, and as only the "rst #exural modeshape is signi"cant in
the frequency range considered, the shape of this mode shape could easily be determined
exactly. As the velocity is a function of distance along each half-beam, the net kinetic energy
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due to #exure of each beam half could therefore be accurately calculated. The
approximation used here overestimates the actual kinetic energy of the "rst mode by
a factor of about 3. If the rigid-body kinetic energy component in J

all
had less signi"cance,

a better estimate of E
total

may well be produced.

7. CONCLUSIONS

The e!ectiveness of using four di!erent cost functions for an active vibration control
system have been studied when applied to a lightweight cantilever 2-D structure comprising
thin lightly damped beams. The aim was to reduce the transmission of vibration, in a given
frequency band, from the base to the end beam of the structure. Two cost functions were
energy-based: the total vibrational energy (E

total
) and the #exural energy level (E

flex
). The

other two were velocity-based: the sum of the squares of the translational velocity
components (J

trans
) and the weighted sum of the squares of all velocity components (J

all
).

The latter used the rotational velocity component in addition to the translational
components at each beam end.

A brief single-frequency analysis showed that the use of E
flex

as the cost function can
result in signi"cant increases in E

rigid
and so limit of the reduction attainable in E

total
. E

total
is

con"rmed as being the most comprehensive measure of beam vibration and was used as
a reference to compare the success of using the other three cost functions. For
single-actuator combinations it was found that whilst the frequency-averaged version of
E
total

, SE
total

T, is the most comprehensive cost function, it is found that there is little
disadvantage in using SE

flex
T. This is thought to be because the structure comprises thin

&&#exible'' beams and so bending motion is dominant in the frequency band of interest. Even
though the single-frequency cases studied showed some shortcomings of not controlling
E
rigid

, this was not borne out when using cost functions averaged over a frequency band.
Generally, reducing SE

rigid
T is thought to be more important if less-#exible beams, or rods,

were used as the structural elements.
Using SJ

all
T as a cost function was found to be the better velocity-based cost function in

reducing SE
total

T. For three-actuator AVC systems, the reductions in SE
total

T achieved by
minimizing SJ

all
T were generally 10 dB less than those achieved by minimizing either

SE
flex

T or SE
total

T. The use of SJ
trans

T as a cost function was not found to yield good
reductions in SE

total
T. However, it was found to provide a very good prediction of the

E
rigid

component alone, which may prove useful in structures comprising more rigid beams.
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APPENDIX A: MINIMIZATION OF A HERMITIAN QUADRATIC FORM WITH
POSITIVE-DEFINITE QUADRATIC COEFFICIENT MATRIX

It is su$cient to show the derivation of the minimum of the cost function used in the main
text algebraically, in the case where the quadratic coe$cient matrix is positive de"nite. This
assumption avoids the complexities of using di!erential calculus (as discussed in reference
[13], for example) which would normally be required to show a solution for a general case
where no such assumptions can be made.

The cost function J is de"ned in quadratic form with the complex column vector
x containing l complex independent variables,

J (x)"xHAx#xHb#bHx#c, (A1)

where A is a square matrix of dimension l]l, b is a complex vector of length l, and c is
a positive scalar. If A is Hermitian and also positive de"nite, then [14]

xHAx"y'0 for all xO0, (A2)

and y will always be a positive scalar, if xO0. The positive de"niteness of A is ensured in
practice (see main text) and is veri"ed by testing that all the eigenvalues of A are positive
[14]. Assuming that a solution which minimizes J exists, equation (A1) may be written as

J (x)"(x!x
0
)HA(x!x

0
)#d, (A3)

where d is a real scalar, and x
0

is the optimum value of vector x. Expanding equation (A3),
so

J (x)"xHAx!xHAx
0
!xH

0
Ax#c, (A4)
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allows, "rstly, the scalar relation between c and d to be de"ned as

c"xH
0
Ax

0
#d. (A5)

Secondly, equating the coe$cients between equations (A1) and (A4), gives

!x
0
A"b, !xH

0
A"bH, (A6a,b)

which are two forms of the same solution. The solution to equation (A3) that minimizes J is
clearly given when x"x

0
, and thus

J (x
0
)"d"c!xH

0
Ax

0
. (A7)

The optimum values of x are obtained from equations (A6a,b)

x
0
"!A~1b, xH

0
"!bHA~1. (A8a,b)

As A is positive de"nite it is also of full rank [14], and hence its inverse exists. As in equation
(A6), the two forms given in equation (A8) are not di!erent solutions but equivalent forms of
the same solution, since for a Hermitian matrix A~1"A~H. The minimum value of the cost
function (A7) can be expressed in terms of the coe$cients from the quadratic form (A1)
using equation (A8),

J (x
0
)"c!bHA~1b. (A9)

Because the vector-matrix term in equation (A9) is a positive scalar, the solution is
a minimum as the value of J (x ) is less than J (x) when x"0.
0
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